сигма-функция

  • 1сигма-функция — сущ., кол во синонимов: 1 • функция (49) Словарь синонимов ASIS. В.Н. Тришин. 2013 …

    Словарь синонимов

  • 2сигма-функция — с игма ф ункция, и …

    Русский орфографический словарь

  • 3сигма-функция — (1 ж), Р. си/гма фу/нкции …

    Орфографический словарь русского языка

  • 4сигма-функция — си/гма фу/нкция, си/гма фу/нкции (σ фу/нкция) …

    Слитно. Раздельно. Через дефис.

  • 5сигма-функция — сигм/а/ функци/я [й/а] …

    Морфемно-орфографический словарь

  • 6функция — См …

    Словарь синонимов

  • 7Функция (математика) — У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения …

    Википедия

  • 8Сигма-алгебра — σ алгебра (сигма алгебра)  алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания …

    Википедия

  • 9Сигма-функции —         целые Трансцендентные функции, введённые К. Вейерштрассом при построении им своей теории эллиптических функций. Основной из четырёх С. ф. является функция                   где ω = 2mω1 + 2nω2, ω1 и ω2 два числа, отношение которых не… …

    Большая советская энциклопедия

  • 10Борелева функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… …

    Википедия

  • 11Борелевская функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… …

    Википедия

  • 12Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… …

    Википедия

  • 13Борелевская сигма-алгебра — это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми. Если не оговорено противное, в качестве топологического… …

    Википедия

  • 14Монотонная функция — Монотонная функция  это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Монотонная… …

    Википедия

  • 15Целая функция — функция, голоморфная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного …

    Википедия

  • 16Возрастающая функция — Монотонная функция это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Содержание 1 Определения 2… …

    Википедия

  • 17Невозрастающая функция — Монотонная функция это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Содержание 1 Определения 2… …

    Википедия

  • 18Неубывающая функция — Монотонная функция это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Содержание 1 Определения 2… …

    Википедия

  • 19Убывающая функция — Монотонная функция это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Содержание 1 Определения 2… …

    Википедия

  • 20ЭЛЛИПТИЧЕСКАЯ ФУНКЦИЯ — в собственном смысле двоякопериодическая функция, мероморфная в конечной плоскости комплексного переменного г. Э. ф. обладают следующими основными свойствами. Не существует целых Э. ф., кроме констант (теорема Лиувилля). Пусть примитивные периоды …

    Математическая энциклопедия